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ROBUST MULTIGRID SMOOTHERS FOR THREE DIMENSIONAL ELLIPTIC

EQUATIONS W_ITH STRONG ANISOTROPIES *

IGNACIO M. LLORENTE t AND N. DUANE MELSON :_

Abstract. We discuss the behavior of several plane relaxation methods as multigrid smoothcrs for the

solution of a discrete anisotropic elliptic modcl problem on cell-centered grids. The methods compared are

plane Jacobi with damping, plane Jacobi with partial damping, plane Gauss-Seidel, plane zebra Canss-Seidel,

and line Gauss-Seidel. Based on numerical experiments and local mode analysis, we compare the smoothing

factor of the different methods in the presence of strong anisotropies. A four-color Gauss-Seidel method

is found to have the best numerical and architectural properties of the methods considered in the present

work. Although alternating direction plane relaxation schemes are simpler and more robust than other

approaches, they are not currently used in industrial and production Codes because they require thc solution

of a two-dimensional problem for each plane in each direction. We verify the theoretical predictions of Thole

and Trottenberg that an exact solution of each plane is not nccessary and that a single two-dimensional

multigrid cycle gives the same result as an exact solution, in much less execution time. Parallelization of

the two-dimensional multigrid cycles, the kcrnel of the three-dimensional implicit solver, is also discussed.

Alternating-plane smoothers are found to be highly efficient multigrid smoothers for anisotropic elliptic

problems.

Key words, multigrid methods, anisotropic discrete operators, plane implicit methods, robust multigrid
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1. Introduction and motivation. The efficient solution of systems of partial differential equations

is a challenging practical problem from a computational point of view. Computer scientists, applied math-

ematicians, physicists and engineers are contributing to achieving the shared goal of faster, more accurate

numerical solutions while always considering the possibilities and limitations of current computers. In fact,

progress in numerical solution of these systems requires the effective combination of advances in algorithm

development, understanding underlying physics, and computer hardware.

Today, many in the computational community are engaged in finding and developing the fastest methods

to solve the systems of equations resulting from the numerical discrctizations of mathematical models in

physics, chemistry, engineering, medicine, etc. This search is one of the main goals of scientific parallel

computing because the numerical solution of these systems of equations is compute-intensive and is the

limiting factor in the size of problems and complexity of the physics that can be solved numerically.

Consequently, it is necessary to fully understand a numerical method before it is used as a tool to solve

practical numerical problems. The definitive measures of the efficiency of a method are execution time and

memory usage. Execution time is difficult to predict because it depends on the numerical and architectural

properties of the method as well as the performance of the underlying computer. The numerical properties
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include its computational complexity: convergence rate and work per cycle in our particular case. The

architectural properties of a method include its memory usage, parallel efficiency and data locality. Good

data locality has become a valuable property of a numerical method because it assures an efficient use of the

hierarchical memory structure (cache) of current microprocessors.

Standard multigrid techniques are efficient methods for solving many types of partial differential equa-

tions (pde's) duc to their optimal complexity (work linearly proportional to the number of unknowns),

optimal memory requirement, and good parallel efficiency and scalability in parallel implementations. Al-

though highly efficient multigrid methods have been developed for a wide class of problems governed by

pde's, they are underutilized in production and commercial codes. One reason for this is that the high level

of efficiency is not maintained in anisotropic problems, i.e., the convergence rate of standard multigrid meth-

ods degenerates on problems that have anisotropic discrete operators. There is intensive ongoing research

aimed at combining the high efficiency of multigrid with good robustness so that multigrid becomes more

widely used in production and/or commercial codes.

Several methods have been proposed in the multigrid literature to deal with anisotropic operators. One

popular approach is to use semi-coarsening where the multigrid coarsening is not applied uniformly to all of

the coordinate directions, By selectively NOT coarsening the grid in a ccrtain direction, the anisotropy can

be reduced on the coarser grid. This makes it easier for the smoother to eliminate other components of the

high frequency error on the coarser grid. (This approach is basically a 'work-around' for a weak smoother.)

Another approach for dealing with anisotropic problems is to devclop and use multigrid smoothers

which can eliminate all high frequency errors in the presence of strong anisotropies. The present work

explores the capabilities of a class of plane-implicit smoothers in the presence of various anisotropies. These

plane-implicit schcmes are a natural for structured grids. (It is more difficult to apply these plane-implicit

schemes to unstructured grids because there is no natural definition of a plane or even a line.) Other

intermediate alternatives that combine implicit point or line relaxation with partial and full coarsening have

been presented in the multigrid literature [5]. In Section 4 we give a brief introduction to several approaches

to plane-implicit smoothers. A comparison between the alternatives is difficult because there are many

performance parameters involved that result in a great variety of numerical and architectural properties.

We do not find one method always better than the others; rather, we find that each one can be optimum in

differcnt situations.

Multi-block structured grids arc often used in fluid dynamic applications to capture complex geometries

and facilitate parallel implementation without dealing with unstructured grids. Inside each block stretched

grids are used to obtain improved discretization accuracy near the boundaries where high gradients in the

solution are often present. As a result, the local discrete operator may contain strong anisotropies from both

the coefficients of the equation and the highly stretched grid. The objcctive of this report is to study the

behavior of traditional plane relaxation methods as robust smoothers for the multigrid solution using full

coarsening of these discrete anisotropic operators. The model problem under study is the solution of the

anisotropic elliptic model equation on a cell-centered grid, described in Section 3.

This rcport presents analytical formulae for the smoothing factors of some plane relaxation smoothers

with periodic and Dirichlet boundary conditions. The analytical expressions are verified with several nu-

merical experiments with Dirichlet boundary conditions and cell-centered grids. The formulae provide an

accurate prediction of the numerical results. The dependence of the convergence rate on the strength of

the anisotropy for the model problem on vertex-centered grids has been previously studied for the two-

dimensional (2-D) case, for example by Wesseling in [31], and observed for the three-dimensional (3-D) case
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withzebraGauss-Seidel by Thole and Trottenberg [28]. This report contains the first published numerical

results and analysis of the behavior of plane relaxation methods for cell-centered grids. The results, pre-

sented in Section 6, are very satisfactory. The performance of some p|ane smoothers improves considerably

for strong anisotropies since they effectively become exact solvers.

The numerical results show that zebra Gauss-Seidel does not perform as well as expected, in fact, the

standard (lexicographic order) Gauss-Seidel obtains better convergence rates. This seems to contradict the

results presented by Thole and Trottenberg in [28] and by Yavneh in [32] for vertex-centered grids. However,

the deterioration of the smoothing factor of Gauss-Seidel with odd-even ordering on cell-centered grids has

been previously reported by Cjesdal [8] for the 2-D case.

Wc show that the use of alternating-plane relaxation smoothers yield very efficient robust multigrid

solvers. They are considered in the multigrid lkerature to have poor numerical and parallel properties

because of the expensive and parallel inefficient solution of a large number of 2-D problems. However, we

demonstrate in Section 5 that an exact solution of the planes is not needed and that just one 2-D multigrid

cycle is sufficient which considerably reduces the execution time of a 3-D smoothing sweep. This result is

also shown analytically in [28] by Thole and Trottenberg. On the other hand, the solution of each plane

by a 2-D multigrid cycle involves the solution of a very large number of tridiagonal systems of equations

(in a general case, band structured with constant bandwidth). This is not a problem in a sequential setting

because very efficient band solvers exist. However, in a fine-grain parallel setting the tridiagonal systems

may be distributed across many processors which leads to a high volume of interprocessor communication.

Section 7 studies different alternatives to bridge this drawback.

2. Factors to consider when comparing numerical methods. Computational scientists are inter-

ested in increasing the accuracy of their numerical simulations while reducing the execution time required to

obtain the solutions. Therefore, the quality of the solver must be considered in terms of program execution

time and memory usage, relative to the accuracy obtained in the numerical simulation. Of course, there are

other criteria for a good code that candidate methods must satisfy: reliability, robustness, portability, main-

tainability, etc. However, execution time and memory usage are the definitive metrics for the performance of

a numerical method. Execution time depends on the numerical properties of the method, the performance

of the computer and how the code exploits the underlying computer architecture (architectural properties).

The numerical properties are usually studied by way of theoretical complexity studies based on problem

size. However, one can reach misleading conclusions regarding the numerical efficiency of a method by just

comparing complexities. The complexity studies usually represent an asymptotic limit, but for finite practical

problem sizes, the results can improve or deteriorate. One example of this situation is a result shown in this

paper where, for practical mesh sizes, the smoothing properties of plane smoothers improve considerably

relative to the predicted performance for a grid with an infinite number of points. An improvement of

the numerical properties of a method can be considerably more beneficial than the improvement of the

architecture properties. Improvements in convergence rate compound with each iteration or multigrid cycle

whereas improvements in operations-per-second remain linear. However, as discussed in I26], the programmer

must be aware of the underlying architecture to use the full potential of current computers; from workstations

to high performance platforms.

With the rapid technological and architectural development occuring in the wide variety of computers

currently available, it would seem that it is impossible to consider the underlying computer when developing

and comparing numerical methods. However, there are some architecture properties that are essential, (and

likely to remain essential over the next few years) to use the full potential of most current computing systems.



Parallelismisoneof thcsearchitecturalproperties.Differentlcvclsof parallelismareneededforefficiently
exploitingthehighnumberofexecutionpipelinedunitsin thecurrentsuperscalarprocessorsandforkeeping
busytheprocessorsin aparallelcomputer.Thetrendsin highperformancecomputingshowthat future
computerswill consistof thousandsof commoditymicroprocessors.In fact,it ispresentlyverycommonin
thenumericalliteratureto considertheparallelismgradeasoneofthemaincomparisonfactors.

Theperformanceof thecurrentsuperscalarmicroprocessorsindicatesanincreasingdependenceoneffi-
cientusageofhierarchicalmemorystructures.Indeed,themaximumperformancethat canbeobtainedin
currentmicroprocessorsislimitedbymemoryaccessspeed.Thcpeakperformanceofthemicroprocessorshas
incrcasedbya factorfourto fiveeverythreeycarsbyexploitingincreasingintegrationdensity,reducingthe
clockcycle,andbyimplementingarchitecturaltechniquesto takeadvantageofmultiplelevelsofparallelism
in a program.Howcver,memoryaccesstimehasbeenreducedbya factorof only1.5to 2.0overthesame
period.Thedisparitybetweenimprovementsin microprocessorspeedandmemoryaccessspeedseemslikely
to continueoverthenextfewyears.Microprocessorsmayreachaspeedof 4Gflopsat thebeginningof the
nextcentury[19]withouta commensuratememoryaccessspeedup.Thecommontechniqueto bridgethis
gapandhide thc memory latency problcm is by using a hierarchical memory structure with large fast cache

memories close to the processor. As a result, the memory structure has a strong impact on the design and

development of a code, and the program must exhibit spatial and temporal data locality to make efficient

use of the cache memory and so keep the processor busy.

Therefore data locality is becoming as important as parallel efficiency when studying and comparing

different algorithms. The effectiveness of data locality has been well demonstrated in the LAPACK project

[1] and major research has just begun to develop cache-friendly iterative methods [6, 25]. On most RISC

machines, there is an order-of-magnitude increase in performance going from an out-of-cache implementation

to a cache-friendly implementation.

3. The numerical problem. We consider the following anisotropic elliptic partial differential equation

02u(x, y, z) b02U(X, y, z) + c02U(X, y, z)
(3.1) a Oz 2 + Oy 2 Oz 2 = f(z, y, z)

This anisotropic Poisson equation is solved on a 3-D rectangular domain 12 C _3 with some suitable boundary

conditions.

3.1. Discretlzatlon. There arc two ways to replace a space continuum by a space structured grid. In

finite difference discretizations the domain f_ is divided in cells and the conserved quantities are stored at the

vertices of these cells (vertex-centered formulation). In finite volume discretizations, the domain 12 is also

divided into cells but the conserved quantities are stored at the centers of thesc cells (cell-centered formula-

tion). Cell-centered grids have been widely used in CFD for the finite volume solution of the incompressible

and compressible Navier-Stokes equations. As our goal is to study the behavior of the smoothers in a CFD

setting we focus our attention to cell-centered grids.

The nodes of the discretization are given by

G = {x E I2 : x = xj = jh, j = (jl,j2,j3),

h = (hl,h2, ha),ja = O, 1,...,na, h(_ = 1/na, o_= 1,...,3},

the computational grid is given by

1_11,(3.2) G={xen:x=xj=(j-s)h,j=(jl,j2,ja),s=( , _ _)

h = (hl,h2,h3),j_ = 1,...,n,_,h_ = 1/n_,c_ = 1,...,3},



andtheboundaryconditionsareevaluatedat

(__1 0),OG= {x E Ofl : x = xj = (j + s)h,j = (j_,j2,0),s = '2'

=_j= (j+s)h,_=(_l,j2,n_),8--(_,_,0),

x--- xj --- (j + s)h,j -- (jl,0,j3),s-- (_,O, ,

x=x3 = (j+s)h,j = (jl,n2,ja),s = (5' ' )'

x=xj = (j÷s)h,j = (O, j2,j3),8 -_ (0,_,),

11Ix = xj = (j-t- s)h,j ----(nl,j2,ja),s = (O,-_, ,

h = (hl,h2, h3),j_ = 1,2,...,n,_,h_ = 1/na, a = 1,...,3}

Fig. 1 shows a uniform 32x32x32 grid.

FIG. 1. 3_x3_x3_ un_.foT_m grid.

The following difference equations, involving algebraic relationships between grid points, are obtained



viaadiscretizationofEq. (3.1)onthecell-centeredcomputationalgrid(3.2)byafinitevolumctechnique

a Ui- l,j,k -- 2Ui,j,k q- Ui+ l,j,k -_- b Ui,j- l,k -- 2Ui,j,k "_- Ui,j + l,k -'_ cUi,j,k-1 -- 2Ui,j,k -'_ Ui,j,k + l

h_ h_ h 2" = f_d,k

i = 1,...,nl,j = 1,...,n2, k = 1,...,ha

where ui,j, k is the discrete version of u(x, y, z) function in (i - !2 J - 5,1k - 7)'1

This equation can have different space steps in each dimension which results in a different aspect ratio

in each dimension. If the equation is then normalized by the coefficient in the z-direction, the following

anisotropic discrete operator is obtained:

_I (Ui- t,j,k -- 2Ui,j,k -_ Ui+ l,j,k ) '_ _2(Ui,j- l,k -- 2Ui,j,k _- Ui,j+ l,k ) _ (Ui,j,k- I -- 2Ui,j,k nt- Ui,j,k +1) ": f_,j,k

(3.3) i = 1,...,nl,j = 1,...,n2, k = 1,...,ha

where el and e2 are the strength of the anisotropies.

The structured grids used in the present work allow a relatively easy sequential and parallel implemen-

tation using, for example, distribution strategies supported by the current versions of High Performance

Fortran (HPF). Furthermore, parallcl implementation and cache memory exploitation is possible due to the

regular data structures in the structured grids.

Grid stretching is commonly used in CFD grid generation to pack points in regions of high gradients in the

solution while avoiding having too many points in more benign regions. In the present work, the stretching

of the grid in a given direction is determined by the stretching ratio (quotient between two consecutive space

steps) or by a boundary fraction parameter (fraction of uniform spacing used for spacing at the boundary).

Figure 2 shows a stretched grid with stretching ratio of 1.5 (boundary fraction 0.01) in the x-direction and

uniform in the y- and z-directions. Figure 3 shows a stretched grid with a stretching ratio of 1.5 in all three

directions.

In a stretched grid, each cell can have different aspect ratios and so the discretization of Eq. (3.1) is

given by the following general discrete operator:

(3.4)

2a 1 1
Ui_ l,j, k -- ( _-

Axi (Axi + Axi-1 Ax_ + Ax_+x

2b( 1 1 +
Ayj Ayj + AYj-1 ui,j-l,k -- ( Ayj + Ayj+l

2c 1 1

Azk(Azk + Azk-1 u_d'k-1 - ( Azk + Azk+l +

1 1
\ + \

Axi q- Axi-1 )Ui,j,k Axi -b AXi+l Ui+l,j,k)
+

1 1

Ayj + Ay_-I )ui,_,k + Ayj + Ay3+l uid+l,k) +

1 1
\ + \

Azk + Azk-l)u_'_'k Azk + Azk+_ uw"k+_)

fid,_:

i = t,...,nl,j = 1, ...,ne, k = 1, ...,n3

where Dirichlet boundary conditions are imposed at the boundaries of the domain. Note that Eq. (3.4)

includes the case with variable coefficients, different values of a, b, and c in different parts of the computa-

tional domain. Varying grid aspect ratios and values of the equation coefficients cause the strength of the

anisotropies to be different in each cell.

The computational experiments presented in this report study separately both sources of anisotropy:

anisotropic equation coefficients on uniform grids and isotropic equation coefficients on stretched grids. These

represent different situations; the first represents anisotropies that are uniform thoughout the domain and the

llll
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FxC. 2. 32x32x3_ stretched grid along x-direction (stretching ratio 1.5 and boundary fraction 0.01).

latter represents anisotropies that vary from cell to cell in the domain. Note that for exponential stretching

in all directions, every cell can have a different level of anisotropy between the coefficients of the discrete

operator. On the other hand, when there is exponential stretching in only one direction, two coefficients are

similar and the third coefficient, corresponding to the stretching direction, changes in each cell.

If we consider the relative size of the resulting terms in the three coordinate directions, wc see that therc

arc several possible scenarios for a given cell:

• all three terms are relatively equal (isotropic with no directions dominant)

• one term is relatively larger than the other two terms (anisotropic with one direction dominant)

• two terms are relatively larger than the third term (anisotropic with two directions dominant)

4. Robust multigrid methods. The multigrid technique has many important advantages from thc

computational point of view. A well designed multigrid method has, at most, a computational complexity of

O(N log N), where N is the number of equations in the system, to achieve a numerical solution to the level

of truncation error [2, 3, 18, 31]. Moreover, these multigrid methods offer very good parallel efficiencies and

scalability on parallel computers [15, 16, 17].
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FxG. 3. 3$x3_x3Z stretched grid along all directions (stretching ratio 1.5 and boundary fraction 0.01).

Multigrid methods rely on a combination of a smoothing process couplcd with a coarse grid correction.

Multigrid smoothers arc often traditional relaxation or incomplete factorization based methods and scrve

to reduce high frequency components of the error in the solution on thc fine grid. The smooth components

of the error arc more efficiently approximated on coarscr grids. Therefore, using a grid hierarchy, we can

efficiently reduce the whole frequency domain and achieve the final solution with an optimal opcration count.

4.1. The FAS multlgrid scheme. Thc system of equations (3.4) is solved by the full approximation

scheme (FAS) scheme [2, 18, 31]. This multigrid method is more involved than the simpler correction scheme

but can be applied to solve a wider number of problems, such as the solution of nonlinear equations.

In vertex-centered coarsening, a coarse grid is obtained by sampling the next finer grid at every other

point. In cell-centered coarsening, a coarse grid is obtained by taking unions of fine grid cells. Consequently,

by applying cell-centered coarsening, a sequence G l : l = 1, 2, ..., L of increasingly coarser grids is obtained

(4.1) G l={xfl:x=xj=(j-s)ht,j=(jl,j2,j3),s=( ,_, ),

na l

h I -- (hi, h2, h3), Ja -_ 1,2, ..., 2z_1 , h a = 2t-1/n_}

I: 11 I •



The following iterative algorithm represents an FAS ('_I,72)-cycle to solve the system Lu = f where

_1 =_

u +- FAS(L, u, f)

step 1: Apply "Y1 sweeps of the smoothing method on LXu 1 = fl

RESTRICTION PART

FOR 1 = 2 TO L

step 2: Computation of residual r t-1 = ft-1 _ Lt-lut-1

step 3: Restriction of residual r I = Rl-Xr l-x

step 4: Restriction of current approximation uloid = Rt-lu t-1
l 1

step 5: Computation of right-hand side ft = r t + L Uold

step 7: Apply _/1 sweeps of the smoothing method on Ltu t = ft

PROLONGATION PART

FORI--L-I TO 1

step 8: Correctionofcurrentapproximation ut--uz- Pl(ut+1 --ul+ll
old !

step 9: Apply _/2 sweeps of the smoothing method on Llu I = fl

The operators that perform the restriction, R (steps 3 and 4), and prolongation, P (step 8), connect the

grid levels; the prolongation operator maps data from the coarser level to the current one and the restriction

operator takes values from the finer level to the current one. For thc restriction operator, we used unweighted

averaging for u and a volume weighted sum for the residual. Trilinear interpolation in the computational

space was used for the prolongation operator. The smoothing methods are implemented in delta form, which

is simpler to program but computationally less efficient.

Plane-implicit smoothers (step 7 and 9) require the solution of a large number of 2-D boundary value

problems. For example, an (x,y)-plane smoother requires the solution of n3 problems (K = 1, ..., n3) given

by:

f2-DCl (Ui-I,j,K -- 2Ui,j,K "4- Ui+I,j,K) 3t- _2(Ui,j-I,K -- 2_ti,j,K -_ Ui,j+I,K) Jr (--2Ui,j,K) = i,j,K

i = 1,...,nl,j = 1,...,n2

f2-D depends on the relaxation method. The resulting 2-D problems are more favorable becausewhere _,j,K

the systems may have more diagonal dominance than the original 3-D system. The 2-D problems can be

efficiently solved by also using 2-D FAS cycles (Section 5).

Notice that the grids visited in the 2-D coarsening are different from the grids used for the 3-D multigrid.

Therefore, the grid metrics for the grid hierarchy to solve the planes does not correspond to the grid metrics

for the 3-D grid hierarchy. To precompute all the metrics for the 2-D grid hierarchy would significantly

increase the memory requirements of the multigrid code. In fact, the required memory for a 3-D cycle with a

point-wise smoother grows as O(SN), but to precalculate all the metrics of a plane-wise smoother, it would

grow as O(_N), which is about 52% larger.

Due to the considerable improvement of convergence rate achieved by multigrid methods, the solution

of pde's is moving from time-critical applications to accuracy-critical applications [17]. In these kinds of



applications,memoryusageis thelimiting factorfor solvinglargerproblems.Savingsin computingtime
arejustusedto solvebiggerproblems.Consequently, it is important to maintain the memory requirements

of point-wise smoothers when implementing plane-wise smoothers. Therefore, the present scheme is coded

using just one 2-D multigrid data structure and recomputing each 2-D system of equations every time a plane

is visited. This implementation maintains the memory requirements of the original 3-D multigrid cycle, but

increases the execution time. However, because the memory requirements arc the same, the performance of

thc plane smoother can be more exactly compared with the performance of point and line smoothers. This

implementation alternative also improves the data locality (temporal and spatial) of the algorithm because

the same 2-D multigrid structure is used to solve each plane. The temporal locality is improved because the

2-D data structure fits in cache and the program uses the same data storage addresses when solving each

one of the planes. The spatial locality of the data is improved in the current implementation because data

arc contiguously stored in memory whereas the usage of a global 2-D multigrid hierarchy to store all planes

would present different memory access strides depending on the orientation of the plane.

4.2. Robust multigrid methods for anisotropic equations. For a wide class of pde problems,

highly efficient multigrid methods have been developed. Unfortunately, this high levcl of efficiency is not

maintained for problems with strong anisotropies.

For example, Iet us consider the following 2-D model discrete equation

(4.2) e(ui-ld - 2ui,j + ui+lj) + (uij-1 - 2uid + u_j+l) = fi,j

i = 1,...,nl,j = 1,...,n2

where e > 1. In this case the standard multigrid algorithm, based on a point-wise smoother, is not a good

approach because after few sweeps the error becomes smooth in the x-direction and not in the y-direction.

The two components used in multigrid for error attenuation are the smoothing method, to reduce the high

frequency components of the error, and the coarse grid correction, to reduce the low frequency components

of the error. Consequently, to maintain good convergence rates on anisotropic operators we have to improve

either the smoother or the coarsening process:

• Keep standard coarsening, but change the smoothing method; solve simultaneously for those un-

knowns which are strongly connected (x-line relaxation on Eq. (4.2): lines parallel to x-axis).

• Keep point-wise smoothing method, but change the coarsening strategy; define the coarser grid by

doubling the mesh size in those directions in which the error is smooth (x-semicoarsening on Eq.

(4.2), double the mesh size only in the x-direction).

In the 3-D case, represented by Eq. (3.3), we can extend the previous alternatives by using plane

relaxation to solve simultaneously those unknowns which arc strongly coupled or by coarsening only those

directions in which the error is smooth.

Brandt's fundamental block relaxation rule [2] states that all strongly coupled unknowns (coordinates

with relatively larger coefficients) should be relaxed simultaneously. So, if e2 _ 1 in Eq. (3.3), we could

use x-line relaxation as an efficient smoother. However, if el _ e2 >> I (x,y)-plane relaxation is needed to

provide a good smoother. There are other approaches that efficiently combine block and point relaxation

with full or partial coarsening, see for example [18].

The block relaxation rule can be extended to blocks that also includc relatively small coefficients if the

coordinate directions with relatively small coefficients are not coarsened. Although this alternative is more

robust, its computational complexity (operation count) increases considerably because it is necessary to solve

noncoarsened blocks at each multigrid level. As a result, we can conclude that an efficient smoother with full

10



coarsening is obtained by block relaxation of the coordinates with relatively larger coefficients if the problem

to be solved in the remaining coordinates is isotropic; and the coordinates with relatively smaller coefficients

can also be relaxed in the block when the grid is not coarsened in their c0rresponding directions.

The situation becomes more involved with real applications, see Eq. (3.4). First, the coefficients of

the pde can vary throughout the computational domain. Second, the efficient resolution of many pde's

requires stretched grids that have mesh spacing that varies several orders of magnitude in different coordinate

directions. As a result, the values of the e parameters and their relative magnitudes vary for different parts of

the computational domain. For this type of problem, robustness can be achieved following these directions:

• Robust multigrid smoothing processes with standard coarsening. Use alternating-line relaxation (x-

line smoothing sweep --_ y-line smoothing sweep) in 2-D and alternating-plane relaxation ((y,z)-plane

smoothing sweep --_ (x,z)-plane smoothing sweep _ (x,y)-plane smoothing sweep) in 3-D. Previous

attempts of this approach in the multigrid literature have suggested that it has poor numerical

and architectural properties since it requires the solution of many 2-D problems and presents a

parallelization challenge because it requires the solution of systems of equations which arc distributed

across many processors.

• Point-wise smoothing methods with robust coarse grid correction. The algebraic multigrid approach

(AMG) combines a point-wise smoother with a fully adaptive coarsening process. The control of the

coarsening is done in an adaptive way by semicoarsening in different directions for different parts of

the computational domain [14, 24]. AMG involves very complicated data dependent grid structures

that break the regularity of geometric multigrid. Hence AMC is mainly used with geometrically

complex applications which have been discretized using unstructured grids where there is no natural

definition of a global line or plane on which to apply alternating-block smoothers. The multiple

semicoarsening method was proposed in order to avoid plane relaxation without dealing with the

difficulties of AMG [20, 21]. This method employs more than one semicoarsened grid on each

coarser level and a recombination of the corrections from each of the coarse grids to yield an optimal

efficiency. It is more expensive (execution time and memory usage) than the alternating-block

alternative, but provides two levels of parallelism: parallelism on each grid and parallelism across

the grids on each multigrid level [23].

• Simple smoothing processes combined with appropriate semicoarsening strategies. A simple way to

avoid alternating-plane relaxation, but increasing the execution time, is to use relaxation just in a

fixed plane and semicoarsening in the remaining direction [10]. Another alternative, which avoids the

problem of recombining corrections of the multiple semicoarsening method, is the flexible multiple

semicoarsening method. This method uses standard coarsening combined with a semicoarsened

smoother. The smoother itself corresponds to a V-cycle employing semicoarsened grids while the

multigrid cycle is still based on standard coarsening. The method is easy to parallelize [29].

There is also intensive research to achieve robustness by the combination of Krylov methods, such as

generalized minimum residual (GMRES) and conjugate gradient methods [22, 29] with multigrid.

In the appendix, we present the smoothing properties of some plane relaxation smoothers for strong

anisotropies. We first show their predicted smoothing factors from Fourier local mode analysis with periodic

and Dirichlet boundary conditions and then we present some numerical results to verify the analytical

formula. The numerical results show that Fourier analysis provides an accurate prediction of the smoothing

factor.
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5. The inner 2-D multigrid. Although plane relaxation is simpler and more robust than a semi-

coarsening approach, it has not been widely applied in practical situations because it requires the solution

of a 2-D problem for each plane in each smoothing sweep. However, we show that an exact solution for the

2-D problems is not needed. An approximate solution is sufficient and can be obtained by applying just one

2-D multigrid cycle.

Table 5.1 compares the experimental 3-D convergence rates obtained with just one 2-D cycle in each

plane, with two cycling strategies: V(1,0) and V(1,1), with the convergence rate obtained with a 2-D exact

solver (four 2-D (2,1)-cycles). Thc results are very interesting. With one 2-D V(1,1)-cyclc, wc obtain the

same convergence as with the exact solver with significantly less computational work.

The amplification factor of a 2-D multigrid cycle can be approximated by the smoothing factor of its

smoother. Observe that we require a line relaxation smoother for the 2-D cycles because there may be an

anisotropy in each plane, for example to solve the (x,y)-planes wc need a y-line smoother when el _< e2 and a

x-line smoother otherwise. For robustness in the general case where el _< e2 in part of the plane and el >_ e2

in part of the plane, an alternating line scheme can be used.

el e2

1 1

-'-_-- 10 2

.1 104

1 10 6

1 108

cycling strategies of thc 2-D cycle

(I,0) (1,1) [ Exact

0.45 0.34 0.34

0.27 0.25 0.25

1.5x 10 -2 6.1x 10 -3 6.1x 10 -3

1.5× 10 -4 6.1x 10 -5 6.1 x 10 -5

1.5 x 10 -6 6.2 × 10 -7 6.2 x 10 -7

TABLE 5.1

Computational conve_'gence factors, pc, of one 3-D V(1,0)-cycle with (z,y)-plane Gau_s-Seidel for digerent e2 and el = 1

solving the planes with one $-D V(1,0)-cycle, one 2-D V(1,1)-cycle and an exact solver (four 2-D V(_,l)-cycles)

The behavior of the approximated smoothing method can be analyzed as a perturbation of the exact

method. The smoothing factor, _,, of a plane relaxation smoother when "Y2-D multigrid cycles with an

amplification factor P2-D a_re used to solve each plane can be approximated by

(5.1) _o _ _ + (_2_D) _-_

where _ is the smoothing factor of the plane smoother with an exact 2-D solver.

As is shown in Section A.5, the smoothing factor of a 2-D line relaxation method is quite similar to its

corresponding 3-D plane version (fi _ P_.-D). Consequently, if we use the same block relaxation method in

2-D and 3-D cycles, the 3-D smoothing factor with one 2-D V(1,0)-cycle is given by

_. _ _ + (_-D) _ 2_

and with one 2-D V(1,1)-cycle it could be approximated by

_. _ _ + (_2_D)2 _

Observe that the decrease of the convergence rate for strong anisotropies is also presented in the 2-

D smoother because el remains fixed and e2 increases, so the 2-D problem solved in each plane is also

anisotropic. However, if both anisotropy values are increased together, the 3-D problem is anisotropic but

12
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the 2-D problem does not present an anisotropy and so the convergence rate of the 2-D problem remains

fixed, becoming the dominant term in (5.1)

I_ cycling strategies cycleof the 2-D
I I

_I c2 (l,O)I (1,1)I Exact

1 1 0.45 0.34 0.34

102 10 _ 0.37 0.14 0.20

104 104 0.37 0.14 4.6 × 10_-4

106 106 0.37 0.14 2.8 × 10 -6

-10 s 10 s 0.37 0.14 3.3 × 10 -s

TABLE 5.2

Computational convergence factors, pc, of one 3-D V(1,0)-cycle with (x,y)-plane Gauss-Seidel for different e2 and el

solving the planes with one P-D V(1,0)-cycle, one _-D V(1,1)-cycle and an exact solver

This behavior is illustrated by Table 5.2. Considering these results we could conclude that we can not

approximate the 2-D solver when both anisotropies are strong. However, we must take into account that

one smoothing sweep with the exact solver is considerably more expensive than the smoothing sweep with

an approximated solver and so the overall efficiency can be better for the approximated method.

Fig. 4 shows the residual versus work units for 3-D V(2,1)-cycles to solve four anisotropic equations on

a 32x32x32 uniform grid with five smoothers:

• point-wise Gauss-Seidel (point),

• y-line Causs-Seidel (plus),

• (x,y)-plane Gauss-Seidel with exact solver in each plane (square),

• (x,y)-plane Gauss-Seidel with one 2-D V(1,1)-cycle in each plane (star), and

• (x,y)-plane Gauss-Seidel with one 2-D V(1,0)-cycle in each plane (circle),

These results allow a comparison of the performance of the plane approximate solvers with the plane

exact solvers and with the behavior of point and line smoothers. The smoother used in the 2-D cycles to

solve the planes is y-line Gauss-Seidel. Each symbol is drawn at the completion of a 3-D multigrid cycle to

compare the computational complexity of the cycles corresponding to different smoothers. Here a work unit

is conservatively defined as the computer time consumed in a residual computation on the finest grid (the

time to perform one point-wise iteration on the finest grid is about two work units).

As indicated in Fig. 4, the approximate plane solution version with one 2-D V(1,1)-cycle (star) is more

efficient than the approximate version with one V(1,0)-cycle (circle) and the exact version (square). Even

when the 2-D problem solved in each plane is isotropic and the remaining direction is effectively decoupled

(a--b=10000, c=l), it is not worth using the exact solver because each 3-D cycle consumes too much time.

The behavior of the plane smoother for strong anisotropies is absolutely good. The residual reduction per

work unit or cycle increases as the anisotropy gets stronger (the two graphics at the bottom of the figure

show a similar residual reduction per work unit). In fact, when e2 -- 104 the solution is achieved to the level

of truncation error in just two 3-D cycles (about 50 work units).

It is illustrative to study the behavior of point and line Gauss-Seidel for these cases. The line smoother is

more efficient than the point-wise version for the isotropic problem. The work per cycle is slightly greater in

the line version, however the asymptotic convergence rate of the line version is 1.42 times lower (better). On
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PiG, 4. Residual versus work units for 3-D V(£,l)-cycles to solve four anisotropie equations on a 3_z3_z32 uniform grid

with the following five smoothers: point-wise Gauss-Seidel (point), y-llne Gauss-Seidel (plus), (x,y)-plane Oauss-Seidel with

exact solver in each plane (square), (x,y)-plane Gauss-Seidel with one $-D V(1,1)-cycle in each plane (star), and (x,y)-plane

Gauss-Seidel with one 2-D V(1,0)-cyele in each plane (circle). The smoother used in the _-D cycles ts y-line Gauss-SeideL

Each symbol represents a 3-D cycle in order to compare the complexity of the cycles of diJ_erent smoothers.

thc other hand, the plane smoother exhibits a less cfficient behavior for the isotropic case. The pcrformancc

of the plane smoother is twice as slow as thc observed performance of the point smoother. The plane

smoother reduces the error more per multigrid cycle than the line smoother but its operation count is so

much higher that it ends up being slower form the isotropic case. The computer program used to generate

the present results is not fully optimized. It was coded to deal with many different methods and situations

and so this result may change some with coding practice.

As was expected, the point smoother gives very poor convergence rates for the anisotropic problems.

However, the line smoother performs very fast when e2 >> c1, as is demonstrated in Section A.5. This is

because a singlc direction dominates the solution in this case.

Fig. 5 shows the residual versus work unit for 3-D V(1,0)-cycles to solve the isotropic equation on four

32x32x32 stretched grids with the following five smoothers:

• point-wise Gauss-Seidel (point),

• alternating-line Gauss-Seidel (plus),

14
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• alternating-plane Gauss-Seidel with exact solver in each plane (square),

• alternating-plane Gauss-Seidel with one 2-D V(1,1)-cycle in each plane (star), and

• alternating-plane Gauss-Seidcl with one 2-D V(1,0)-cycle in each plane (circle).
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FIc. 5. Residual versus work unit for 3-D V(1,0)-cycles to solve the isotropic equation on /our 32x3Bx3_ stretched

grids with the following five smoothers: point-wise Oauss-Seidel (point), alternating-line Oauss-Seidel (plus), alternating-plane

Gauss-Seidel with exact solver in each plane (square), alternating-plane Gauss-Seidel with one Z-D V(1,1)-cycle in each plane
(star) and alternating-plane Gauss-Seidel with one 2-D V(1,0)-eyele in each plane (circle). The smoother used in the _-D

cycles is alternating-llne Gauss-Seidel. Each symbol represents a 3-D cycle in order to compare the complexity with the cycles

of different smoothers.

The smoother used in the 2-D cycles to solve the planes is alternating-line Gauss-Seidel.

In the two cases of stretching ratio equal to 1.0 and 1.25, the approximate plane solver with one V(1,0)-

cycle performs better than either the approximated solver with one V(1,1)-cycle or the exact solver. However,

as the stretching ratio increases, the performance for the approximate plane solver with one V(1,1)-cycle

improves. All cases show that the exact solver gives much worse performancc.

Fig. 5 also shows an unexpected behavior of the alternating-line smoother. This optimal behavior is duc

to the use of stretching along the three directions that produces high discrepancies for the local values of

the anisotropy in each cell, and therefore the local dominance of one of the directions. In fact, the numerical

results obtained with grids stretched along just one direction show a poor behavior of the alternating-line

15



smoother.

6. Comparisonof the plane smoothers.Fig. 6 showsresidualversusworkunit for 3-DV(2,1)-
cyclesto solvefouranisotropicequationsona 32x32x32uniformgrid with thefollowingfive(x,y)-plane
smoothers:

• Gauss-Seidel(solid),
• zebraGauss-Seidel(dashed),
• four-colorGauss-Seidel(star),
• Jacobiwithdamping0.7(dotted),and
• Jacobiwithpartialdamping0.7(dashdot).
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=
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FIG. 6. Residual versus work unit for 3-D V(2,1)-cycles to solve four anisotropic equations on a 3_x3$x32 uniform grid

with the following five (x,y)-plane smoothers: Gauss-Seidel (solid), zebra Gauss-Seidel (dashed), four-color Gauss-Seidel (star),

Jacobi with damping 0.7 (dotted), and Jaeobi with partial damping 0.7 (dash dot). One 2-D V(1,1)-cycle is used to solve each

plane. The smoother used in the 2-D cycles is the y-line version of the one used in the 3-D cycles.

The best results are consistently obtained with the four-color plane Gauss-Seidel method.

On the other hand, Fig. 7 shows residual versus work unit for 3-D V(1,i)-cycles to solve the isotropic

equation on four 32x32x32 stretched grids with the following five alternating-plane smoothers:

• Gauss-Seidel (solid),
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• zebra Gauss-Seidel (dashed),

• four-color Gauss-Seidel (star),

• Jacobi with damping 0.7 (dotted) and

• Jacobi with partial damping 0.7 (dash dot).
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FIG. 7. Residual versus work unit for 3-D V(1,1)-cycles to solve the isotropic equation on four 3_x3$x3$ stretched grids

with the following five alternating-plane smoothers: Gauss-Seidel (solid), zebra Gauss-Seidel (dashed), four-color Gauss-Seidel

(star), Jacobi with damping 0.7 (dotted) and Jacobi with partial damping 0.7 (dash dot). One 2-D V(1,1)-cycle is used to

solve each plane. The smoother used in the _-D cycles is the alternating-line version of the one used in the 3-D cycles.

In this case, the best results are obtained with the lexicographic ordering.

In general, the three Gauss-Seidel plane implicit methods and the Jacobi plane implicit method with

partial damping give similar results with anisotropic equations. Jacobi with damping performs worse because

its smoothing factor does not improve with the anisotropy. However, four-color Gauss-Seidel performs better

in the isotropic case. About the parallel implementation, zebra Gauss-Seidel, four-color Gauss-Seidel and

Jacobi methods are fully parallelizable, however the Jacobi method is likely to give better parallel efficiencies

because of its coarser granularity.

The improvement of the convergence rate for strong anisotropies is not expected to deteriorate con-

siderably for increasing mesh sizes. The residual versus work units for 3-D V(2,1)-cycles to solve four

anisotropic equations on a uniform grid with (x,y)-plane four-color Ganss-Seidel and the isotropic equation
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onfourstretchedgridswithalternating-plancfour-colorGauss-Seidelforgridsizes32x32x32,64x64x64and
128x128x128aregivenin Fig. 8 and9respectively.Thesefiguresshowthat thegoodbehaviorfor strong
anisotropiesdeterioratesslightlyfor largergridsizes.Thediscrepanciesin the isotropiccaseshowthede-
pendenceof theconvergencerate,p, on the problem size; it tends to _, the predicted convergence rate for

periodic boundary conditions.
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F[C. 8. Residual versus work unit ]or 3-D V(2,1)-cycles to solve ]our anisotropic equations with (x,y)-plane four-color

Gauss-Seidel with the following grid sizes: 32x32x32 (dotted), 64z6_x6_ (dash dot) and 128x128x128 (solid). One 2-D V(1,1)-

cycle is used to solve each plane. The srnooLher used in the 2-D cycles is y-line ]our-color Gauss-SeideL

7. Efficiency considerations. One of the drawbacks mentioned in the literature against plane relax-

ation smoothers is their inefficiency on parallel computers. A plane relaxation sweep implies the solution of a

large number of tridiagonal systems of equations. For example, with (x,y)-plane relaxation and using y-line

relaxation inside each plane, it is necessary to solve nln3 systems of equations (I = 1, ..., nl;K = 1, ...,n3)

in each 3-D smoothing sweep

]-D
(7.1) el(--2UI,j,g) -{- e2(tLl,j-l,K -- 2Ulj,K + 1LI,j+I,K) + (--2Ul,j,K) = fl,j,K

j = 1, ...,n2

The improvement of the parallel efficiency of tridiagonal solvers has been a focus of intensive research
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FIC. 9. Residual versus work unit for 3-D V(l,1)-cyeles ¢o solve the isotropic equation on four stretched grids

with alternating-plane four-color Gauss-Seidel with the following grid sizes: 32x32x32 (dotted), 6,_x6_x6_ (dash dot) and

128xl_8x1_8 (solid). One 2-D V(1,1)-cycle is used to solve each plane. The smoother used in the _-D cycles is the alternating-

line four-color Gauss-Seidel.

in the last few years, see for example [7, 9, 11, 13]. Most of these methods improve their computational

count when the system is strongly diagonally dominant, which is a likely situation in Eq. (7.1). Tridiagonal

systems could also be solved by a multigrid algorithm. It is expected that the solution could be reached in

just one 1-D V(1,1)-cycle (extending the results obtained in Section 5 for the 2-D cycles to solve the planes).

The smoothing sweeps can be implemented so as to make more efficient use of cache memory than sequential

tridiagonal solvers. The parallel tridiagonal solvers sweep over the data stored in memory at least two times

and so the data within the cache is invalidated for large problems. However, the 1-D multigrid method can

be implemented to pass over the data just one time for a number of sweeps, improving its temporal locality

[6, 25].

Another easy and efficient alternative for dealing with the parallel implementation of thc plane solvers

is by blocking the smoother. The blocks are distributed across the processors and the plane relaxation is

performed only within the blocks of the grid. The blocking of the plane relaxation also allows the application

of plane smoothers with multi-block structured grids because only a local dcfinition of the line or plane is

needed. The blocking improves the temporal locality of the smoother. If the block fits entirely in cache, the
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plane solver can pass over the data just one time for a number of sweeps and so the smoother makes more

efficient use of the cache memory. Moreover, it provides an additional advantage. A different smoother could

be used in each block depending on the local strcngth of the anisotropy and the stretching direction. For

example, plane smoothers might be confined to the blocks in the region with stronger anisotropies. However,

this blocking alternative causes a deterioration of the smoothing properties of the method. Jones and Melson

show in [12] that for line smoothers in the 2-D case, true multigrid efficiency is achieved only when the block

sizes are proportional to the strength of the anisotropy. Further, the blocks must overlap and the size of

the overlap must again be proportional to the strength of the anisotropy. (True multigrid efficiency is the

convergence and operation count obtained by multigrid using a point Gauss-Seidel smoother on an isotropic

elliptic problem.)

8. Conclusions and future directions. We have shown numerically and analytically the smoothing

factors of traditional plane relaxation methods with Dirichlet boundary conditions. The smoothing perfor-

mance of the following relaxation methods have been investigated for the multigrid solution of a discrete

elliptic model equation on a cell-centered grid with strong anisotropies:

• Plane Jacobi with damping

• Plane Jacobi with partial damping

• Plane Gauss-Seidcl

• Plane zebra Gauss-Seidel

• Plane four-color Gauss-Seidel

• Line Gauss-Seidel

All of the plane-implicit schemes studied but plane Jacobi with damping show a linear decrease of smooth-

ing factor with increasing anisotropy strength, regardless of the relative strengths of the two anisotropies

possible in 3-D problems considered. The good behavior of the plane smoothers deteriorates very slightly

with an increase in the number of cells per side in the grid. Consequently, we feel that their excellent perfor-

mance can be maintained for large practical problems. Although line smoothers give very good results when

onc of the anisotropies is much largcr than the othcr, line smoothers perform poorly when both anisotropics

arc similar and, hence, can not be considered for a robust method.

The numerical results indicate that zebra Gauss-Seidel does not perform as well as expccted on cell-

centered grids. In fact, the lexicographic order Gauss-Seidel obtains better convergence rates and four-

color plane Gauss-Seidel becomes an attractive smoother because of its good convergence rates and parallel

properties. Plane Jacobi with partial damping is also a very good alternative', it performs worse in the

isotropic case but exhibits coarser granularity in a parallel setting.

The practical feasibility of plane relaxation as a multigrid smoother has been demonstrated. The solution

of the 2-D boundary-value problem corresponding to each plane can be approximated with just one 2-D

multigrid cyclc. The same behavior can be expected if 1-D multigrid is applied to the solution of the

tridiagonal systems of equations involved in the plane solution. As a result, alternating-plane smoothers are

just two times slower than point-wise smoothers in the isotropic case and are robust multigrid smoothers

that are orders-of-magnitude faster for anisotropic operators. Moreover, plane smoothers are an alternative

that are easy to program, both on sequential and parallel computers.

We are interested in the applicability of plane smoothers with multi-block grids. Therefore, we will

continue working on block-structured plane smoothers. In particular, we want to study the behavior of

blocked plane smoothers and determine if the results rclating block size, overlap, and anisotopy strength

obtained by Jones and Melson in [12] hold in the 3-D case and in more complicated pde's and problem
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geometries.Wefeelthat thesmoothingperformancewill notsufferexcessivedeteriorationwith domain
decomposition.
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Appendix A. Smoothingfactorsof plane relaxation methods.
A multigridmethodconsistsof twodifferentcomponents;a smootherto removethehigh-frequency

componentsoftheerrorin thesolutionandasuccessionof gridcoarseningto eliminatethe low-frequency
componentsbyusingthesmootheronsuchgrids.Thebehaviorofamultigridmethodstronglydependson
thesmoother.Indeed,thedevelopmentof a goodsmootheris thecriticalstepwhendevelopingmultigrid
algorithms.

A simpleandconvenienttool to studythesmoothingpropertiesof arelaxationmethodis theFourier
smoothinganalysis.Theresultsof this analysisgivea measureof the qualityof a numericalmethod.
Occasionally,it istooinvolvedto obtainananalyticalexpressionfor thesmoothingfactorandsoit mustbe
calculatednumerically.However,explicitformulasarepreferredbecausetheygivemoreinformationabout
thedependenceofthesmootherontheinvolvedparameters.

TheFouriersmoothinganalysisdoesnot considerthe intergridtransferprocessandthediscrepancy
betweenthe coarsegrid andfinegrid discreteapproximationsof the operator,sothe actualnumerical
performancecanvaryslightlyfromthepredictedperformance.Toobtainamoreaccurateprediction,atwo-
levelanalysis,whichtakesintoaccounttheoperationsanddiscrepanciesbetweenlevels,mustbeapplied.
Resultsof theFourieranalysiscanbefoundin theliterature,forexamplesee[27,30,31]forthe2-Dcase
and[32]forthe3-Dcase(notincludingresultspresentedin thisreport).

In spiteof thefactthattheFourieranalysisgivesthesameresultsforvertex-centeredandcell-centered
grids,wehavenoticeddiscrepanciesbetweenbothcaseswith zebra plane Gauss-Seidel in our numerical

experiments. We show how the lexicographic order performs significantly better than the zebra ordering.

These discrepancies have also been reported by Gjesdal [8] for the 2-D case. They may be caused by the

coarse grid correction and may be reflected in a two-level analysis.

Our methodology and notations are similar to those used by Wesseling [31]. Assume a matrix represen-

tation of the system of equations (3.3) denoted by

Lu = f

and let the smoothing method given by the following splitting

u = Su+ M-If, s----- M-1N, M- N = L

The error matrix is M-1N and the error after "r iterations of the smoothing method is given by

e rn+l = STern

We can expand the error in a Fourier series of the eigenfunctions or local modes 4(0) of S

,7 = c 4j(0), 45(0)= e,50
eGO
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with i = xflL--1, j E I, and 8 c O

I = {j: j = (jl,j2,j3),ja = 1,2,...,n_,a-- 1,...,3}

27rk_ na na
0 = {8 : 8 = (81,8_, 83), 8,_ = --, k,_ .... o_= 1, ..., 3)

na 2 '"" 2'

Hence

s',¢(8) = x_(8)¢(8)

where A(8) is the eigenvalue corresponding to ¢(8) and

c_'+' = x_(8)_'

The eigenvalue is the amplification factor, so the largest of the eigenvalues in absolute value, the so

called spectral radius, dctcrmines the rate of convergence of the relaxation method.

We can distinguish between high-frequency or rough eigenfunctions (8 E Or) and low-frequency or

smooth eigenfunctions (8 E 08). If we want to study the rate of convergence of the relaxation mcthod the

damping ]actor is given by the largest of the eigenvalues over all frequencies (O). However if we are interested

in the smoothing ]actor of the method we must consider just the rough components (Or). Rough and smooth

components are given by

7r _ 3

O, = On(-_-,_) ,O,.= o\o,

Let us define p as the local mode smoothing factor

p= ,_p(l_(8)J :8 e o.},

so that the error over the rough components is multiplied by a factor p after each smooth iteration. Note

that p depends on the problem size n_ because Or depends on the problem size.

However, Or tends to

-- 71" _ 3
or = [-_,_1_ \ (-_, _)

as na T, and we can define

-_= sup{lA(8)] : 8 e Or},

even so _ may not be independent on n_ because ),(8) may depend on the problem size. For example, in time

dependent problems the dependence of A(8) on the temporal step improves considerably the convergence

rate of traditional relaxation methods [17].

In the local Fourier analysis it is easier to obtain _, but we have to take into account that for practical

values of na (especially in the 3-D case where n_ tends to bc much smaller than in 1-D and 2-D cases due to

computer memory limitations) p may be much smaller than _ and so the behavior of the smoothing method

might be better than the predicted based on _.

The above definitions consider standard coarsening. With semicoarsening there is at least one direction

in which the space step is not doubled. The Fourier modes in those directions are resolved on all grids and

so they are not included in Or.
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The previous analysis has been performed considering periodic boundary conditions. Though the periodic

analysis gives accurate predictions for our problem with Dirichlet boundary conditions for weak anisotropies,

it has been observed that better agreement with the numerical results can be obtained by excluding from

the analysis the Fourier modes with 0_ = 0 since the error at the boundary is always 0, see [4]. In fact, the

numerical results obtained for strong anisotropies are accurately explained using this approximation.

Therefore, when studying the problem with Dirichlet boundary conditions we consider the wave numbers

given by

O D {0 : 0 (01,02, 03), O_ 2_rk_ n_ n_= = -- , k_ _ 0, ks .... , -- a = 1, ..., 3}
no 2' 2'

and the smoothing factor is defined as

The relation between the three smoothing factors is the following

PD <_P<_P

The periodic problem appears to be a pessimistic limit of the Dirichlet problem and the Dirichlet problem

tends to the periodic one for very large mesh sizes.

The eigenvalue problem S¢(0) --- A(O)¢(O) has to be solved in order to determine the three smoothing

factors. If the coefficients are constant, the grid size is uniform, and the boundary conditions are pcriodic,

the eigenvalues are given, in stencil notation,by

_(0) = _'_j N(j)¢j(O)
Ej M(j)¢j(O)

The finest grid used in the numerical experiments of this section has 32 points in each direction and all

levels in the grid hierarchy (4.1) are visited during a cycle. All the numerical experiments reported deal with

the numerical solution of Eq. (3.3) on the unit cube _t = (0, 1) × (0, 1) x (0, 1) with a right-hand side of

y(x, y, z) = -(a + b + c) sin(x + y + z)

Dirichlet boundary conditions are enforced on the boundary by evaluating

The experimental convergence factor presented in the tables is the asymptotic average residual reduction

factor of one 3-D FAS cycle

IIr"l12
(A.1) Pe = Hr,__ll]2,n T

or the average residual reduction factor when the reduction per cycle is so high that the rounding errors do

not allow achieving an asymptotic behavior

(h.:) = ll oll2

In the latter case the simulation is performed until the initial residual is reduced by a factor 10 -12. Lower

values for this tolerance factor cannot be reached on 64-bit machines due to roundoff errors.

The 2-D problems in each plane can be solved exactly using enough 2-D FAS cycles. In Section 5 results

are presented of a study on the use of multigrid cycles to solve these 2-D problems. In practice, the exact

solutions can be replaced by approximate ones, considerably reducing the execution time of the solver.
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A°io

applied to Eq. (3.3) corresponds to the following splitting, in stencil notation

[M]k-1 = w -1 0 [MJk = w -1 -el 2 + 2el + 2¢2 -e2 [M]k+l : w -1 0

--C2

The plane Jacobi method with damping. The (x,y)-plane Jacobi method with damping

[N]_-I = 1

The amplification factor is given by

] [°]IN]k= 0 0 0 IN]k+1=
0

cos(03)(0) = 1 - _ +
I + c_(i- cos(O1)) + _2(i- cos(02))

Note that _(0) is real and symmetric, ),(0) = )_(-0), and so we only have to consider O_ >__0 to obtain the

smoothing factor.

Periodic boundary conditions

It is easy to find that the smoothing factor is then given by

, 7r 0(A.3) _ = max{l_(_ 0,0)1,l_(0, _, )1,I_(0,0,_)t}

= max{ll wcx l, ]1 we2 i, t1 - 2wl}
1 + ei 1 +¢2

Note that w must be lower than I to obtain a smoothing factor lower than 1.

< e2 , so the optimum value of the damping parameter toLet us assume ?21 _ n2 _ n3 _ T$ and ¢[1

minimize the smoothing factor is given by

2 + 2ei

(A.4) w = 2 + 3el

and with this optimum damping parameter we have

2+el

(A.5) P - 2 + 3q

If el < 1 the optimum smoothing factor tends to 1, for example _ = 0.99 for el = 10 -2. Therefore,

in such cases, (x,y)-plane relaxation is not a good smoother for our problem and we should use (x,z)-plane

relaxation.

2 andOn the other hand, for el > 1 the optimum value of _v depends slightly on ex, we have _ >__w >

3 >__> _ for 1<e1<c¢.-5 _ _

For w lower than the optimum one the smoothing factor is given by

_dCl

(A.6) _ = 1 - ---
l+el

and for a w greater than the optimum one

(h.7) _ = [1 - 2w[

Dirichlet boundary conditions
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To perform the study with Diriehlet boundary conditions we exclude from analysis the Fourier modes

with 0a = 0. Doing so, defining _o 2_ and considering n large enough to approximate (1 - cos(_o)) by _2=-_-
we find

7r 7r

pD = max{l.X( -,,p,'P)I, <p,
 cos( )  cos( )

= max{ ll -- co -k 1 + _1 + e2(1 - cos(_o))l, I 1 - w-k 1 + q(1 - cos(_)) + c2 ['

co

I1- - 1+  1(1 - eos( o))+  2(1 - cos( ))I}

_ n-h-r ]_t_-- n---_-J I II--w+ I,
__ 21r = l, 2_r a=max{ll w+ 1 t el+ e2 n--_- 1 + el _-Wr+ e2

co

Ii-w-1+ _Wr+ 2_-r

We obtain the following optimum damping parameter (always considering el _< e2)

--C 2¢r2 2_r2 2_r2 _ 27r2
(A.8) u_=2( qT 2 _-g'a-+ n-Wa- 2+el n-n-_-+ 2 _--_-) -1

l+ei+e22_ + l+el2___e 2_a-i-- 2 n-Wa-

and the corresponding smoothing factor

£ 2_= _ 2ha 27ra 2 -_- El_ -_- C 2_r=
(A.9) pD = (el 2 n--T +

21ra -- 2_r 2 " 2_ra ]_ :, + _22n._ + 2_r al+e_+ 2_--_- 1 + q _-_- + e2 n-T I -]- el 1 + el 2n-_ -F e2 n--_-

If n >> q, e2 the previous optimum damping and smoothing factors tend to Eq. (A.4) and Eq. (A.5)

respectively. Otherwise, the optimum damping parameter (A.8) tends to 1 and the optimum amplification

factor (A.9) tends to 0 as O(_) if n << q, or as O(_) if n << e2. Therefore, the plane Jacobi method with

_o = 1 is a very good smoother for strong anisotropies with Diriehlet boundary conditions. Observe that this

result totally contradicts the result obtained with periodic boundary conditions.

For damping parameters lower than the optimum one the smoothing factor is given by

2¢¢2

PD =l-w+ 1 - .--_
l + e_ + e2_-_-w

and for a damping greater than the optimum one the smoothing factor is given by

1

PD [1 W "_ 1 -[- {_I _ "_- e2_

Therefore,

• If n >> q and n >> e2 the smoothing factor tends to the periodic case. See for example in Table A.1

how the results for q, e2 _< 1 fully agree with Eq. (A.4) for the optimum damping parameter and

with Eq. (A.6) and (A.7) for the smoothing factor.

• If n << q and n << ea the smoothing factor tends to

PD = 1 -- w + O(1----_-)oJ
q + e2

as q and e2 become stronger. Table A.l(a), for q,e2 > 102, presents some results that verify

the previous expression. Note that the smoothing factor falls linearly with the strength of the

anisotropies when the damping parameter is equal to one.
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W

'10 -s 10 -8 0.99 0.99 0.99

10 -2 10 -2 0.98 0.98 0.98

1 1 0.90 0.80 0.70

10 2 102 0.80 0.62 0.42

104 104 0.80 0.60 0.40

106 106 0.80 0.60 0.40

108 108 0.80 0.60 0.40

(a) =

0.8

0.99

0.98

0.59

0.23

0.20

0.20

0.20

1.0

0.98

0.98

0.98

0.46

3.6 × 10 -4

3.7 x 10 -6

5.7 x 10 -8

O)

1 1 0.90 0.80 0.70 0.59 0.98

1 102 0.81 0.74 0.62 0.50 0.65

1 104 0.80 0.60 0.40 0.20 9.6 x 10 -4

1 106 0.80 0.60 0.40 0.20 1.0 x 10 -5

_- 10s 0.80 0.60 0.40 0.20 1.0 x 10 -7

(b) _1 = 1 and various c2

O2

c. 0.104 106 108 I
10 -4 10 -2 0.99 0.99 0.99 0.99 0.98

10 -4 1 0.99 0.99 0.99 0.99 0.98

10 -4 102 0.93 0.87 0.80 0173 0.66

10 -4 104 0.80 0.60 0.40 0.20 9.8 x 10 -4

10 -4 10 6 0.80 0.60 0.40 0.20 1.0 X 10 -s

10 -a 10 s 0.80 0.60 0.40 0.20 1.0 x 10 -7

(c) el = 10 -4 and various e2

TABLE A.1

Computational convergence ]actors, pc, ol one 3-D V(1,0)-cycle with (x,y)-plane Jacobi with damping parameter w

• If n >:> el and n << e2 the smoothing factor tends to

p9 = I - + o(k) 
C2

as ¢2 becomes stronger. Table A.1 (b) and (c) give some numerical results that agree with the

previous expression. Observe how for low values of el (even though ct << 1) the method is a very

good smoother ff _2 is large enough.

The previous discussion concludes that the periodic case can be considered as an asymptotic limit of

the Dirichlet case when n tends to oo (n >> e). However, there is a huge difference between the cases for

practical grid sizes. The Dirichlet case presents very good convergence rates with anisotropy values for which
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the periodic case does not converge. The multigrid algorithm reaches the solution accurate to the truncation

error in just a few cycles for a strong value of just one of the anisotropies.

The behavior of the smoother with Dirichlct boundary conditions is attributed to the fact that as the

anisotropy grows, the method becomes an exact solver and so the error is reduced by a factor 1 - w. The

optimum damping parameter depends strongly on e in this case. One way to avoid this and get good

convergence rates for all _ is to apply the damping parametcr just to the diagonal component of the method

in the explicit direction which is the plane Jacobi method with partial damping. In this way the method

becomes an exact solver for strong anisotropies and all damping parameters.

A.2. The plane Jacobi method with partial damping. The (x,y)-plane Jacobi method with partial

damping applied to Eq. (3.3) corresponds to the following splitting, in stencil notation

[M]k-1 = 0 [M]k = --el 2w -1 + 2el + 2e2 --e2 [M]k+l = 0

[ ] [°] I ][N]k-l= 1 [Nlk= 0 0 0 [Nlk+l= 1

0

The amplification factor is given by

1 - - cos(e3))A(e)=
1 + wcl(1 - cos(O1)) -{-wc2(1 - cos(02))

We only have to consider O_ _> 0 because A(O) is real and symmetric, A(O) = A(-O).

Periodic boundary conditions

The amplification factor is given by

7r 7r 0
(A.10) _ = max{])t(5,0, 0)l, IA(0, _, )], IX(0, 0, 2) ], ]A(0, 0, 7r)}}

=max{l_l, 1+c2_ t'll-wl'll- 2_1}

Note that w must be lower than 1 to obtain an amplification factor lower than 1.

Let us assume nl = n2 = n3 = n and el < e2, so the smoothing factor is given by

1
= - -- I1 - 2_1}

(A.11) -p max{1 w' 1 + elw'

If ¢1 < 1, the optimum smoothing factor tends to 1, for example p = 0.99 for ¢1 = 10 -2. Therefore, in

such a case, (x,y)-plane relaxation is not a good smoother and (x,z)-plane relaxation should be used.

If 1 < el < 3, the optimum damping parameter can be obtained by equating the second and the third

hmctions in Eq. (A.11). For example, for el = 1, the optimum damping parameter is equal to 0.78 and the

optimum smoothing factor is 0.56. For w lower than 0.78, the smoothing factor is given by

1
(A.12) _ =

l+w

and for a damping parameter greater than 0.78

(A.13) p = [1 - 2w t
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Ontheotherhand,if q >__3thesmoothingfactordoesnotdependontheanisotropyandit isgivenby

-_= max{1 - w, l1 --2wl}

2 For w lower than theand so the optimum smoothing parameter is ½, corresponding to a damping of 5"

optimum one, the smoothing factor is given by

(A.14) _= 1 - w

and for a damping greater than the optimum

(A.15) _ = {1- 2co{

Dirichlet boundary conditions

To perform the study with Dirichlct boundary conditions wc exclude from analysis the Fourier modes

with Oa = 0. Doing so, defining _0= -_ and considering that n is large enough we obtain

7r

= max{{_(_, _, _)},f_(_, _, _){,{_(_,_, _){,{_(_,_, _){}PD

1 -- co(1-- COS(_O))
1 - coo - cos(_)) I,I + :_T,(_:cos-_7 coc_'= max{ll + coc1+ co_(1 - cos(_)) I

1 -co 1 -2co

I] + we,(1 - eos(_)) + coe2(1 - cos(_)) {' 11 + coq(1 - eos(_)) + coe2(] - cos(_)) {}

-- CO 27r2 1 -- _d 2_r_1
= max({ ?- },{= _ l,

--CO_ 27r2 1 ¢d£ 21r2
1 + COCI-r 2 n-_'_ Jr 1 n----z- -_- _3e2

i -co 1 - 2co

coe 2_= coe 2_l}

These expressions coincide with (A.10) if n >> q, e2.

Otherwise, if n << q, e2, and always considering q _< e2, the optimum damping factor remains ] with a

corresponding optimum smoothing factor

1

3
pD =

1 + 2 2_ a Q,--_-_ 1 +e2)

1

Note that the previous optimum amplification factor tends to 0 as O(q-TT____). For damping parameters lower

than the optimum one the smoothing parameter is given by

I--to

PD =
{ 2aa OJg 2aai+co 1n-r+ 2n--T

and for a damping greater than the optimum one the smoothing factor is given by

1 - 2w
{_

PD

On the other hand, if q is small enough the optimum smoothing parameter tends to 1 for increasing

values of e2. For damping parameters lower than the optimum one the smoothing parameter is given by

CO 2_r_I- _-_
PD =

_ 2_r2l+coq+ 2_--r

and for a damping greater than the optimum one the smoothing factor is given by

1 - 2w

po=]- I+ _-_-+ 2_-rCO£ 2_r_ CO_ 2_r_ {

Therefore,
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E1

10-s

10-2

1

3

10

102

104

106

l0 s

E2

10-8

10 -2

1

3

10

102

104

106

108

0.2 0.4 0.6 0.8 0.9 1.0

0.99 0.99 0.99 0.99 0.99 0.98

0.99 0.99 0.99 0.99 0.98

0.81

0.80

0.70

0.59

0.65

0.41

0.55

0.57

0.99

0.77

0.76

0.98

0.95

0.76 0.56 0.35 0.53 0.71 0.88

0.65 0.42 0.23 0.31 0.39 0.46

1.2x 10 -3 6.2x 10 -4 4.1x 10 -4 3.7x i0 -4 3.6x 10 -4

1.2 x 10 -5

1.2 x 10 -7

4.2 x 10 -6

4.4 x 10 -s3.1 x 10 -v

3.0 x 10 -6

4.0 x 10 -s

6.3 x 10-6

6.4 x 10 -s

a) c 1 _---62

3.7 x 10 -6

5.7 x 10 -s

U2

0.2 0.4 0.6 0.8 0.9 1.0

0.81 0.70 0.65 0.55 0.77 0.98

0.77 0.66 0.58 0,55 0.72 0.92

0.73 0.58 0.48 0.40 0.53 0.6_5

5.8 X I0 -3 2.6 X 10 -3 1.6x 10L3 1.2 X 10 -3 1.0 x 10 -3 9.6 x 10-4

6.7 x 10-5 2.8x 10-5 1.7 x I02_ 1.2x iO-5 I,Ix 10-5 1.0 x i0-5

El

1

1

1

1

1

1

E2

1

10

102

104

106

l0 s 6.7 x 10 .7 2.8 x 10 -7 1.7 x 10-7 1.2 x 10 -7 1.1 x 10-7 1.0 x 10-7

(b) E 1 ---- 1 and various E2

L0

0.2 0.4 0.6 0.8 0.9 1.0

0.99 0.99 0.99 0.99 0.99 0.98

0.99 0.99 0.99 0.99 0.99 0.98

0.99 0.98 0.97 0.96 0.95 0.98

0.91 0.84 0.77 0.72 0.69 0.66

5.9 X 10 -3 2.6 X 10 -3 1.6 X 10 -3 1.2 x 10-3 1.0X 10 -3 9.6 X 10 -4

6.7x10 -s 2.8x 10-5 1,7x 10-5 1.2x i0-5 l.lx 10-5 l.Ox 10-5

6.7 x 10 .7 2.8 X 10 -7 1.7 X 10 -7 1.2 X 10 -7 1.1 X 10 -7 1.0 X 10 -7

E1 E2

10-4 10 -2

10-4 I

I0-4 I0

10-4 102

10 -4 10 4

10 -4 10 6

10-4 l0 s

(C) E 1 = 10 -4 and various E2

TABLE A.2

Computational convergence factors, p¢, of one 3-D V(1,0)-cycle (z,y)-plane Jacobi with partial damping parameter w

• If n >> El and n >> E2 the smoothing factor tends to the periodic case. See for example how the

analytical expressions obtained for the periodic case (Eqs. A.12 and A.13 for q = 1 and A.14 and

A.15 for el = 3) accurately agree with the numerical results presented in Table A.2(a).
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• If n << el and n << e2 the smoothing factor for a damping lower than the optimum one, _, tends to

po = _O(_i + _)"

and for a damping parameter greater than the optimum one tends to

1 - 2w

= +

as ej and e2 become stronger. Table A.2(a), for el, e2 _> 102, contains some results that verify that

the smoothing factor falls linearly with the anisotropy and is a function of w.

• If n >> el and n << e2 the smoothing factor for a damping parameter lower than the optimum one

tends to

1

PD = wO(e2)

and for a damping greater than the optimum one tends to

1 - 2w

as e2 becomes stronger. The optimum damping parameter moves from 0.78 to 1. Tables A.2 (b) and

(c) give some numerical results that verify the previous expressions. This method is a very good

smoother for very low values of el when e_ is large enough.

A.3. The plane Gauss-Seldel method. The (x,y)-plane Gauss-Seidel method with partial damping

applied to Eq. (3.3) corresponds to the following splitting, in stencil notation

-1 [M]k = -el 2+2e1+2¢2 -e2 [M]k+l= 0

[ ] [°] I ]IN]k-1 = 0 IN]k= 0 0 0 IN]k+1 = 1

0

The amplification factor is given by

eio3

x(0)=
2 - e -i°3 + 2e1(1 - cos(01)) + 2e2(1 -- cos(02))

Note that A(_) is complex but symmetric, IA(0)I = IA(-a)l, and so we only have to consider 0_ > 0.

Periodic boundary conditions

It is easier to find the smoothing factor if we rewrite the amplification factor as

IA(0)I = -- 1

_/(2 - cos(03) + 2e1(1 - cos(01)) + 2e2(1 - cos(02))) 2 + sin2 (03)

From the previous expression we obtain

7r 7r 0
(A.16) _ = rnax{lA(_, 0, 0)l, IX(0, 2' )l, IX(0, 0, 2)t}

1 1

= max{I 1-_2el I, 1_1, t_[}
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Let us assume nl -- n2 -- n3 ----n and el _< e2, the smoothing factor is then given by

1 1
max{

Therefore, the smoothing factor is _55 for el _> -_ _ 0.6 and _1 for el < 0.6. For el < 0.6 the

smoothing factor tends to 1 and (x,y)-plane relaxation is not a good smoother; wc should use (x,z)-planc

relaxation.

10 -8 10 -_ 0.99

10 -2 10 -2 0.96

0.66 0.66 0.43

1 1 0.34

102 102 0.20

104 104 4.6 x 10 -4

106 2.8 × 10-6

10 s l0 s 3.3 x 10 -s

(_) _ = _2

1 1 0.34

1

1

1

1

102 0.25

104 6.1 x 10 -4

106 6.1 x 10 -6

l0 s- 6.2 x 10 -s

(b) el -- 1 and various e2

10-4 10-2

10 -4 1

10-4 10 2

10-4 ]0 4

10-4 106

l0 s

(c) _ =

Computational convergence factors, Pe,

0.99

0.97

0.50

6.1 X 10 -4

6.1 X 10 -6

6.2 X 10 -s

10-4 and various e2

TABLE A.3

of one 3-D V(l,O)-cycle with (x,y)-plane Gauss-Seidel

Dirichlet boundary conditions

Excluding from analysis the Fourier modes with _ -- 0, defining _ -- 2_ and considering that n is large

enough we have

7r 71-

= max{lA(_, _, _)l, IA(_,_, _)l, IA(_,_, _-)1}PD
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= max{I [,

= max{[

1 1
I,I

! I

_/(2 - cos{_o) + 2ei + 2e2(1 - cos(_o))) 2 + sin2(_o) _/{2 - cos(_o) + 2ei{1 - cos{qo)) + 2e2) 2 + sin2 (_o)

1
] I)

+ e 10 - cos( )) + 2 2(1 - cos( )))2 + 1
1 1

[,[ f,

1 + _ + 2el + (1 + + 2el + +
v-

1
l I}
_(2 2e 2_2 2e 2_2 _2+ 1_--_ + 2_--rj + 1

These expressions coincidc with (A. 16) ff n >> el, _2" For example Table A.3(a) shows that the experimental

convergence rate when e = 0.66 is 0.43, which verifies the analytical prediction _ of the periodic case.

Otherwise, the smoothing factor is

1
pD = ] ]

_/ 2_'2(2 + 2el _---_ + 2e2 2n-_) 2 -'l- 1

1

when n << el, e2. Note that in this case the smoothing factor tends to 0 as O(_--_-_2 ) for strong anisotropies.

This dcpendencc of the smoothing factor on the anisotropy is verified numerically by the results presented

in Table A.3.

However, for small values of el the smoothing factor tends to

1

PD = V/( 2'r2 + 2e2-_)2 + 2n_1 + _ + 2el

If el is small enough, PD can be approximated by

1
(A.17) PD

1 + 2¢2

and the smoothing factor decreases as O(_) for increasing e2 values. This behavior is also exhibited by the

numerical experiments presented in Table A.3 (b) and (c). Again we find that very good convergence rates

can be achieved even though one anisotropy is lower than one.

The numerical results show that it does not pay to use SOR (w > 1) or damped Gauss-Seidel (_v < 1)

as a smoother.

A.4. The plane zebra Gauss-Seidel method. The analytical study for this case is more involved

because the Fourier modes are not invariant under this method. That is, the zebra ordering does not preserve

the modes. However, the study can be performed considering that the operation of an iteration on a ¢(9)

mode results in a combination of the mode and its harmonics [31]. In this section, we will restrict ourselves

to the presentation and discussion of the numerical results.

In reference [32], Yavneh presents results of his study of the zebra Gauss-Seidel method in all combi-

nations of block and point relaxation with full and partial coarsening for periodic boundary conditions. He

indicates that the smoothing factor with r relaxation sweeps for the present case is given by

1 2 2r - 1)2 1 1
(A.18) P= max{(_--T_, ) ' (--Y;--_ [2(2r - 11]_}

32



GS

ZGS

4cGS

cycling strategies of the 3-D cycle

(1,o)i (o,1)i
0.34 0.34

0.36 0.42

O.28 0.35

0.14 0.14 0.13 0.08 0.08

0.20 0.13 0.24 0.17 0.17

0.14 0.14 0.12 0.10 0.10
TABLE A.4

Computational convergence factors, Pc, of 3-D cycles for different V-cycles strategies with (z,y)-plane Gauss-Seidel (GS),

(x,y)-plane zebra Gauss-Seidel (ZGS) and (x,y)-plane four-color Gauss-Seidel (_cGS) as smoothers

The numerical results presented in Table A.4 diverge considerably from those that we expected because

the lexicographic ordering performs better than the zebra ordering and the result for the isotropic case is

larger than the 0.25 predicted by Eq. (A.18). The translation of the grid points by half space step, that

occurs in cell-centered grids in relation to vertex-centered grids, does not affect the Fourier analysis but it

could affect the behavior of the zebra method in the coarse grid correction, as is shown in [8] for the 2-D

case. Based on the good results with a four-color ordering reported in [8] for the 2-D case, we applied this

ordering and obtained more robustness. (See Table A.4.)

Tables A.5(a), (b), and (c) show the behavior of the four-color and zebra Gauss-Seidel methods as

smoothers. The methods have good behavior for strong values of the anisotropy where the convergence
1

rate decreases (improves) linearly with the strength of the anisotropy as O(_). The four-color ordering

presents similar convergence rates to the lexicographic ordering and parallelizes easily, so that it is an

attractive smoother.

A.5. The line Gauss-Seidel method. We also include line Gauss-Seidel in this analysis because of its

good behavior observed for strong anisotropies in a single direction. Its performance improves considerably

with Dirichlet boundary conditions when one of the anisotropies is stronger than the other; i.e, when one

direction dominates. The application of Fourier analysis to study the smoothing properties of y-line Gauss-

Seidcl as applied to Eq. (3.3) is very cumbersome, here we present numerical results and some explicit

formula for the smoothing factor obtained by studying the behavior of the numerical results. The formulas

help us to explain the behavior of the method in a qualitative way, however they do not represent its accurate

behavior.

If ex > 1 the smoothing factor can be approximated by

E1
PD "_

e 27r')
1+e1+ 2 n-n-_--

that is equal to 0.5 for ex = 1 and tends to 1 for increasing values of cx, this behavior is observed in the

results of Table A.6(a). If e2 >> E1 > 1 the previous expression can be approximated by

1
(A.19) PD

eZ 2rr 2
1+ _ n--_-

and the method presents good convergence rates. (See Table A.6(b).) Eq. (A.19) shows that the smoothing

factor depends on the _ ratio. The results presented in Table A.6(c) also show this dependence on the

quoticnt between anisotropies.

On the other hand, if el < 1 the smoothing factor can be approximated by

1
PD _

e 2_r2El+ 2 n--_- + 1
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4cGSZGS

10 -8 10 -2 0,99

10 -2 0.96

1 1 0.36

102 102 0.I1

104 104 1.2 x 10 -3

106 106 1_2 × 10 -s

I0s

0.99

0.96

0.28

7.4 x 10 -6

1.2x 10 -7 7.4x 10 -8

(a) =

1 1

1 102

1 104

1 106

1 l0 s

ZGS 4cGS

0.36 0.28

0.12 0.16

2.4 x 10-3 1.5x 10-3

2.4_x 10-5 1.5× I0-5

2.4 x 10 -7 1.5 x 10 -7

(b) el = 1 and various e2

E1

10-4

10-4

10-4

10-4

10-4

10-4

¢2

10-2

1

10 2

104

106

10 s

(c) e, = 10 -4

ZGS 4cGS

0.99 0.99

0.97 0.97

0.45 0.46

2.4 x 10 -3 1.5 x 10 -3

2.4x10 -5 1.5x 10 -5

2.4 x 10 -7 1.5 x 10 -7

and various ¢2

TABLE A.5

Computational convergence ]actors, Pe, of one 3-D V(1,0)-cycle with (_,y)-plane Gauss-Seidel (ZGS) and (x,y)-plane

four-color Gauss-Seidel (_cGS)

that tends to 1 for decreasing values of el. (See Table A.6(a).) However if ¢2 >> n the smoothing factor can

be approximated by

1

PD _" £ 2n.2
2 n--n-_ + 1

In this case the smoothing factor decreases linearly with e2 and not with _ (See Table A.6(d).)

The expressions for the periodic case are obtained by letting n go to oo in the previous expressions. As

expected, the convergence rate improves linearly with ¢2 when el = 1. However, another very important

result is that when ¢1 > 1 the convergence rate grows with _ and when el < 1 the convergence rate grows

with e2. Consequently, when one of the anisotropies is stronger than the other, then only one term dominates

and the line smoother gives good convergence rates for practical mesh sizes. That is the explanation for the

good behavior exhibited by the alternating-line smoother on highly stretched grids along all directions.
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A.6. Conclusions about the smoothing factors. We have studied the performance of (x,y)-plane

relaxation methods as smoothers when el _< c2. All of them do not reduce the high components of the

error when both anisotropies, cl and e2, are lower than 1 or when el is lower than 1 and ¢2 is not large

enough. In such cases, (y,z)-plane relaxation would perform as a better smoother. On the other hand, if

_1 > e2, (x,z)-plane relaxation smoother should be used when gl and e2 are lower than 1 or when e2 is lower

than 1 and _1 is not large enough. Robustness can be achieved by applying the plane relaxation smoothers

alternatingly.

The results for periodic boundary conditions presented by Yavnch in [32] show that red-black block

relaxation without coarsening the coordinates relaxed in a block yields the same efficiency as a point-wise

smoother with full coarsening for the lower-dimensional problem defined by the coordinates that are relaxed

in odd-even ordering. Therefore, plane relaxation without coarsening of the coordinates with relatively

smaller or larger coefficients provides a very good smoother.

The question that arises here is whether it is possible to extend this result to include the case of block

relaxation with full coarsening for the methods under study. In this case the coordinates relaxed in the block

must be those with relatively larger coefficients, as is stated by the fundamental block relaxation rule.

Comparing the analytical results obtained in this section for plane relaxation in the 3-D case with the

results presented by Wesseling in [31] for line relaxation in the 2-D case we conclude that,

• first, and in general, the smoothing factor obtained by a line relaxation method in the 2-D case

coincides with the smoothing factor obtained for plane relaxation in 3-D. Indeed, the analytical

expressions presented in this section are similar to the formula obtained in [31] changing e to Cl (we

supposed that _1 _ e2 in the analytical development)

• second, the value of the smoothing factor for a plane implicit method (which depends on the strength

of the anisotropy) is somewhere between the value of the smoothing factor for a point-wise scheme

for the 2-D isotropic problcm and the value of the smoothing factor of the point-wise method for

the isotropic 1-D problem.

Table A.7 contains analytic results obtained in this section and reported by Wessehng [31] and by Yavneh

[32] that verify these conclusions.

On the other hand, the value of the smoothing factor obtained by a line relaxation method in the 3-D

case is somewhere between the smoothing factor obtained with the point-wise version for the isotropic 3-D

problem and the smoothing factor obtained with the point-wisc version for the lower-dimensional problem

defined by the coordinates that are not relaxed in the block; i.e., pointwise for the remaining 2-D problem.

This observation is verified by the results presented in [32] for the 3-D y-line zebra Gauss-Seidel, _ = 0.32

( __ta___2 for el > 2, and the experimental convergence factor of _ obtained for the linefor el = 1 and _ = _1+_2,

3-D line Gaus_Seidel (Table A.6(a)).

Consequently, as we expected, the smoothing factor of a block smoother with full coarsening approaches

• for periodic boundary conditions, the smoothing factor obtained with the point-wise version with

full coarsening for the lower-dimensional problem defined by the coordinates that are not relaxed in

the block, and

• for Dirichlet boundary conditions, an exact solver

as the anisotropy strength grows.
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102 1
102 102

io2 1o4
10 2 10 6

10 2 10 8

_1 J _:2

10-8 I 10-8 0.99
_ 10 .2 0.96

1 1 0.48

102

104

106

108

% 1
1 1

I 10 2

1 104

1 10 6

1 108

102 0.95

104 0.98

106 0.99

108 0.99

0.48

0.31

8.1 x 10 -4

8.3 x i0-6

8.4 x 10.8

(b) el = 1 and various e2

0.96

0.95

10 4 10 5 0.99

104 104 0.98

104 I06 0.50

104 108 6.1 x 10 -4

104 101° 6.2 x 10 -8

0.49

6.1 x 10-4

6.2 x 10 -8

10 .4 10 .2 0.99 10 .5 10 .2 0.96

10 .4 1 0.97 10 .2 1 0.95

10 -4 102 0.50 10 -2 102 0.50

1-1-O-ST--a-!104 6.1 x 10 -4 10 -2 104. 6.1 x 10 -4

10 -4 106 6.1 × 10 -_ 10 -2 106 6.1 × 10 -6

_] 108 6.2 x 10 -8 10 -2 108 6.2 x 10 -8

(C) el ----- 102 and 104 and various £ 2

(d) el = 10-4 and 10 -2 and various e2

TABLE A.6

Computational eonverYjenee factors, pc, of one 3-D V(1,0)-cycle with y-line Oauss-Seidel
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Jacobi with damping

E1 ----- 1 E1 _--- OO

3-D plane relaxation Wopt = iPopt = 3 wopt = _Popt = ½
2 I

wop_ = iPopt = "_ Wop_= 5Pop_ = "52-D line relaxation

2-D point relaxation

1-D point relaxation

= 54p°P t = :3OJopt 5

6dopt :- Popt :

TABLE A.7

Gauss-Seidel Zebra Gauss-Seidel

E1----1.. I E1 _ I E1-'-=_ 1 ] C120.18

1 1
:7_ 0.25 0.125

1 1
_ 0.25 0.125

1
0.25

0.125

Explicit formula for the smoothing factors of different methods with block and point relaxation
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